

V Semester B.Sc. Examination, March/April 2022 (CBCS Scheme) PHYSICS – VI

Astrophysics, Solid State Physics and Semiconductor Physics

Time: 3 Hours Max. Marks: 70

Instructions: Answer any five questions from each Part.
Non-programmable scientific calculators are allowed.

PART – A

Answer any five of the following. Each question carries eight marks: (5×8=40)

1. a) Define luminosity of a star and explain how it varies with the mass?

b) Obtain an expression for the core temperature of a star using linear density model. (2+6)

2. a) Write any four general characteristics of main sequence star.

b) State and explain Virial theorem. (4+4)

3. a) State Moseley's law. Give any three applications of Moseley's law.

b) Obtain an expression for the interplanar spacing of a cubic crystal in terms of miller indices. (4+4)

- 4. a) What is hall effect in metals?
 - b) Obtain an expression for the hall voltage and hall coefficient. (2+6)
- 5. a) Explain the phenomenon of superconductivity.
 - b) Give the differences between Type I and Type II superconductors. (4+4)
- 6. a) What are intrinsic semiconductors?
 - b) Derive an expression for the electron concentration in the conduction band of an intrinsic semiconductor. (1+7)
- a) Give the differences between Zener diode and ordinary diode.
 - b) With a circuit diagram, explain the working of Zener diode as a voltage regulator and hence obtain an expression for the minimum value of series resistance. (2+6)

- 8. a) What is a transistor?
 - b) With a neat circuit diagram, explain the working of NPN transistor in CE mode as an amplifier. (1+7)

PART - B

Solve any five of the following. Each problem carries four marks: (5×4=20)

- A star whose apparent magnitude is observed to be 15 has a parallax of 0.05".
 Find the absolute magnitude and compare the luminosity with that of the Sun.
 (Absolute magnitude of sun M_a = 5).
- If the luminosity of white dwarf is 0.015 L_e and its radius is 650 km, calculate its temperature.
- Calculate the life time of a star of mass 5M_o if the life time of sun is 12 billion years.
- X-rays of wavelength 0.25 Å undergoes compton scattering from a carbon block. Calculate the wavelengths of scattered radiation at 60° and 180°.
- 13. Calculate Fermienergy in eV for silver at absolute zero temperature. Electron density of silver is $5.863 \times 10^{28} \, \text{m}^{-3}$ and $m_{_B} = 9.11 \times 10^{-31} \, \text{kg}$.
- 14. Calculate the current produced in a small Ge plate of area 10⁻⁴ m² and of thickness 0.2 x 10⁻³ m. When a p.d. of 4V is applied across the faces. Given concentration of free electrons in Ge is 2 x 10¹⁹m⁻³, mobilities of electrons and holes are 0.36 m²/V-S and 0.17 m²/V-S respectively.
- 15. For a transistor in CE mode V_{CC} = 12 V and Re = 5K Ω , calculate the values of cut off and saturation points to draw dc load line.
- 16. The h-parameters of a transistor are $h_{ie} = 2k\Omega$, $h_{re} = 3 \times 10^{-4}$, $h_{fe} = 60$ and $h_{oe} = 30 \times 10^{-6}$ mho. Calculate the current gain and voltage gain. ($R_S = 1k\Omega$ and $R_L = 2k\Omega$).

PART - C

Answer any five of the following. Each question carries two marks :

 $(5 \times 2 = 10)$

- 17. a) Does more massive star has shorter wavelength? Explain.
 - b) Can all stars have equal masses? Explain.
 - c) Penetrating power of X-rays is greater than that of visible light. Justify.
 - d) Does all the energy levels are filled by electrons at absolute zero? Explain.
 - e) Large currents can not be passed through superconductors even though they have zero electrical resistance. Justify.
 - f) The depletion region of a semiconductor diode becomes wide when it is reverse biased. Explain.
 - g) Is ordinary light can be used for crystal diffraction? Explain.
 - h) The size of the collector is made wider than emitter and base. Explain.

V Semester B.Sc. Examination, March/April 2022 (CBCS) CHEMISTRY Organic Chemistry (Paper – V)

Time: 3 Hours

Max. Marks: 70

- Instructions: 1) The question paper has two Parts. Answer both the
 - 2) Draw diagrams and write chemical equations wherever necessary.

PART - A

Answer any eight of the following questions. Each question carries two marks.

 $(8 \times 2 = 16)$

- What are enantiomers? Give an example.
- 2. How would Ethylamine obtained from acetaldehyde?
- Write Haworth structure of Lactose.
- State Isoprene rule.
- Write the Nitration of Quinoline.
- 6. Write the structure of Menthol and its uses.
- 7. What is Mordant?
- 8. Write the structure of Diclofenac and its uses.
- What is bathochromic effect? Give an example.
- 10. What is principle of UV spectroscopy?
- Write the D.L. configurations of Glyceraldehyde.
- 12. What are epimers? Give an example.

PART - B

Answer any nine of the following questions. Each question carries six marks.

 $(9 \times 6 = 54)$

- a) Explain optical isomerism of lactic acid.
 - b) Write E-Z configurations of 2-butene.

(4+2)

- a) Explain Resolution of Racemic mixture by chemical method.
 - b) Define Resolution.

(4+2)

15. a) Describe Hinsberg test to distinguish primary, secondary and tertiary amines. b) How benzene diazonium chloride is converted to chlorobenzene? (4+2)16. a) Write classification of carbohydrates, based on number of monomeric units present, with one example per each. (4+2) b) Write erythro and threo isomers of Tartaric acid. a) Describe Skraup's synthesis of Quinoline. (4+2) b) Give an example for chichibabin reaction. a) Write any four general characteristics of Alkaloids. (4+2) b) Structure of Nicotine and identify chiral carbon. 19. a) How Malachite green synthesized? (4+2) b) R.S. configuration of 2-Amino propanoic acid. a) Outline the synthesis of sulphanilamide. (4+2)b) Write the synthesis of pyridine from acetylene. 21. a) What is chemical shift? How it is expressed? b) Why TMS used as standard reference compound in (3+3)NMR spectroscopy? 22. a) Mention the number of signals and multiplicity of the signals in the NMR spectrum of 1, 1, 2-trichloro ethane. b) Write advantages of spectroscopic method over conventional methods. (4+2)23. a) Explain Gabriel Phthalimide reaction with example. b) IUPAC name of Trimethylamine. (4+2)24. a) How citral synthesized from methyl heptenone? b) Compare the basicity of pyrrole and pyridine. (4+2)25. a) Draw the two conformations of 1, 2-dimethyl cyclohexane. b) Significance of fingerprint region in IR spectroscopy. (4+2)

V Semester B.Sc. Examination, March/April 2022 (CBCS Freshers Scheme) (2020 –21 and Onwards) PHYSICS – V

Statistical Physics, Quantum Mechanics – I, Atmospheric Physics and Nano-Materials

Max. Marks: 70 Time: 3 Hours Instruction : Answer any five questions from each part. PART - A $(5 \times 8 = 40)$ Answer any five of the following. Each question carries 8 marks. 1. a) Define: ii) Phase space i) Micro state b) Derive the Maxwell-Boltzmann distribution law $n_i = g_i e^{-(\alpha + \beta E_i)}$. 2+6 2. a) What is meant by Bose-Einstein condensation? b) Explain Bose-Einstein condensation of liquid helium. Mention two special 2+6 properties of liquid helium - II. 3. What are fermions? Arrive at Fermi-Dirac distribution for a system of fermions. 1+7 4. Describe briefly the failure of classical mechanics to explain i) Photo electric effect 4+4 ii) Atomic spectra. 5. Describe with necessary theory G.P. Thomson's experiment for establishing 8 the wave nature of light. 6. a) What are matter waves? Mention any two of its characteristics. b) Derive an expression for de-Broglie wavelength. Hence express it 3+5interms of energy and temperature. 7. Based on the vertical distribution of temperature, explain different layers in the 8 earth's atmosphere. a) Write a short note on Carbon nano tube. 4+4 b) Mention any four applications of nanomaterial. P.T.O.

PART - B

2.

(5×4=20)

Answer any five of the following. Each question carries 4 marks.

Common data:

 $h = 6.625 \times 10^{-34} Js$; $k = 1.38 \times 10^{-23} JK^{-1}$

 $c = 3 \times 10^{6} \text{ ms}^{-1}$; $m_{e} = 9.1 \times 10^{-91} \text{Kg}$

- The rms velocity of hydrogen molecules at NTP is 1.84 Kms⁻¹. Calculate the
 rms velocity of oxygen molecules at NTP. Given molecular weight of hydrogen
 and oxygen are 2 and 32 respectively.
- A system has only two particles, show with diagram how these particles can be arranged in three quantum states 1,2,3 using Bose Einstein statistics.
- The number of conduction electrons per m^a in silver is 5.85x10²⁸ and in lithium is 4.7x 10²⁸. If the Fermi energy of silver is 5.48 eV, Calculate the fermi energy of lithium.
- Find the phase velocity and group velocity of an electron whose de-Broglie wavelength is 1.8Å (neglect relativistic effect).
- 13. In the Davisson and Germer's experiment electrons of energy 100eV incident on the lattice planes of a crystal produce a strong Bragg's reflection in the first order. Calculate the glancing angle. Given the lattice spacing to be 2.15Å.
- The position and momentum of 0.4KeV electrons are simultaneously determined.
 If the position is located within 1Å, what is the uncertainty in its momentum.
- At what height the pressure of the atmosphere becomes 40% of the pressure at the sea level. Given scale height is 8.5km.
- Calculate the coriolis force at a hill station at 30°N having a zonal wind speed of 20ms - 1.

PART - C

Answer any five of the following. Each question carries 2 marks.

 $(5 \times 2 = 10)$

- a) Can Maxwell-Boltzmann statistics be applied to electron gas ? Explain.
 - b) Does the fermi energy depend on temperature ? Explain.
 - c) Can matter waves travel faster than light ? Explain.
 - d) Does the concept of Bohr orbit violate the uncertainty principle ? Explain.
 - e) Is there a coriolis force near equator ? Explain.
 - The presence of water vapour in atmosphere is important. Justify.
 - g) Does the band gap of nanoparticles increase with decrease in particle size ? Explain.
 - h) Graphene is the strongest material. Justify.

V Semester B.Sc. Degree Examination, March/April 2022 (CBCS Scheme) LIFE SCIENCE Cell and Molecular Biology

Time: 3 Hours Max. Marks: 70

Instructions: 1) Answer all questions.

2) Draw diagrams wherever necessary.

Explain any two of the following:

 $(10 \times 2 = 20)$

- 1. Justify cell as a unit of life.
- Explain the different stages of Mitosis.
- Explain the lac operon concept.
- 4. Explain the principles of Electron Microscopy.

Write explanatory notes on any five of the following:

 $(5 \times 6 = 30)$

- 5. Explain any two stages of Meiosis II.
- Describe the structure of chloroplast.
- 7. Tryptophan operon.
- Heterochromatin.
- 9. Membrane proteins and their functions.
- Describe the structure of DNA.
- 11. Describe the structure of tRNA.

Write a short note on any five of the following:

 $(5 \times 4 = 20)$

- 12. Mitochondrial DNA.
- Lysosomes.
- 14. Electron Microscopy.
- 15. Introns.
- 16. Ribosome.
- 17. Genetic code.
- 18. Euchromatin.

翻链堆開車推翻

Fifth Semester B.Sc. Degree Examination, March/April 2022 (CBCS)

BIOTECHNOLOGY

Paper - V: Genetic Engineering and Environmental Biotechnology

Time: 3 Hours Max. Marks: 70

Instruction: Draw a neat labelled diagrams wherever necessary.

SECTION - A

I. Write short notes on the following.

 $(5 \times 2 = 10)$

- 1) ECOR1
- 2) pUC-19
- 3) Southern blotting
- 4) Gasohol
- 5) Renewable resources.

SECTION - B

II. Answer any four of the following.

 $(4 \times 5 = 20)$

- Explain the salient feature of cosmid.
- 7) Write a note on DNA library construction.
- 8) Describe screening of recombinant cell by colony hybridization.
- Give an account on the treatment of municipal waste water and industrial effluents.
- 10) What is bioleaching? Add a note on bioleaching of gold and uranium.

SECTION - C

III. Answer any three of the following.

 $(3 \times 10 = 30)$

- 11) What are restriction enzyme? Give the types and mechanisms of their action.
- 12) Describe the production of human insulins by rDNA technology.

- 13) Write notes on the following:
 - a) CaCl₂ method of gene transfer.
 - b) SDS-PAGE.
- 14) What is bioremediation? Explain the methods of bioremediation of pesticide, heavy metals and detergent.
- Explain the production of modem fuels. Add a note on their Environmental impact.

SECTION - D

IV. Answer the following.

 $(10 \times 1 = 10)$

- 16) What is cDNA?
- 17) The recognition site for ECOR1 is
- 18) What is denaturation?
- 19) COS-site.
- 20) DNA hybridization.
- 21) What are biopesticide?
- 22) Expand ddNTP's.
- 23) What are exhaustible fuel?
- 24) What is endomycorrhizae?
- Name the antibiotic resistance markers in pBR-322.

MHESSER

Fifth Semester B.Sc. Degree Examination, March/April 2022 (CBCS Scheme)

Paper - VI : BIOTECHNOLOGY Immunology and Animal Biotechnology

Time: 3 Hours Max. Marks: 70

Instruction: Draw neat labelled diagram wherever necessary.

SECTION - A

I. Write short notes on the following :

 $(5 \times 2 = 10)$

- 1) Adjuvant
- 2) Innate immunity
- 3) Plasma clot
- 4) Collagen
- 5) Memory Cell.

SECTION - B

II. Answer any four of the following :

 $(4 \times 5 = 20)$

- Explain Lymph node and their function.
- 7) Write in brief the steps involved in Phagocytosis.
- 8) Explain the techniques and application of RIA.
- 9) What are cell lines? Add a note on finite cell line.
- Describe in detail on the importance of serum media.

SECTION - C

III.	Ans	swer any three of the following:	(3×10=30)
	11)	Define antigen. Explain in detail the factors influencing antigenic	ty.
	12)	Define Hypersensitivity. Explain the types of Hypersensitivity.	
	13)	Give an account on :	
		a) Components of Complement System.	
		b) Labelled antibody.	
	14)	What are Monoclonal antibodies ? Explain its production and app	olication.
	15)	Explain animal cell culture in Vaccine Production.	
		SECTION - D	
IV.	Ans	swer the following in one sentence :	(10×1=10)
	16)	Plasminogen.	
	17)	Anaphylaxis.	
	18)	PDGF.	
	19)	Microinjection.	
	20)	Hypersensitivity I is antibody mediated.	
	21)	Universal donor.	P. GA
	22)	Immunogen.	
	23)	MALT.	
	24)	Myeloid lineage.	
	25)	Transgenic mice.	

Fifth Semester B.Sc. Degree Examination, March/April 2022 (CBCS Scheme) CHEMISTRY

Paper - VI: Physical Chemistry

Time: 3 Hours Max. Marks: 70

Instructions: 1) The question paper has two Parts.

- 2) Answer both the Parts.
- Draw diagrams and write chemical equation wherever necessary.

PART - A

Answer any eight of the following questions. Each question carries 2 marks. (8×2=16)

- 1. Define ionic conductance. How it is related to transport number of an ion?
- Calculate the resistance of 0.1 M KCl solution whose specific conductance is 2.21 Sm⁻¹ (Cell constant is 2.62 m⁻¹).
- 3. Direct current can not be used in conductance measurements. Give reason.
- 4. Write any two advantages of Quinhydrone electrode.
- 5. Why Weston-Cadmium cell is used as standard cell?
- 6. What is the effect of temperature on degree of hydrolysis of a salt ?
- 7. Explain induced dipole moment with an example.
- State Born-Oppenheimer approximation.
- 9. HCl exhibits rotational spectrum where as Cl₂ does not. Why?
- Define force constant. Mention its significance.
- 11. What are stokes and anti-stokes lines?
- Mention any two disadvantages of DME.

PART - B

Answer any nine of the following questions. Each question carries 6 marks. (9x6=54)

- a) Describe the determination of transport number of H^{*} ion by moving boundary method.
 - b) The molar conductance of CH₃COONa, HCl and NaCl at infinite dilution are 11.23 ×10⁻³, 44.26 ×10⁻³ and 14.56 ×10⁻³ Sm⁻²/mol respectively. Calculate the molar conductance of CH₃COOH at infinite dilution. (4+2)
- a) Explain the principle involved in the conductometric titration of weak acid and strong base.
 - b) Calculate the electrode potential of Ag electrode at 25°C which is in contact with 0.25 molar of Ag⁺ ions in solution [E°Ag = 0.8 V]. (4+2)
- a) Explain asymmetric and electrophoretic effect of strong electrolytes based on Debye-Huckel theory.
 - b) Write DHO equation and indicate the terms involved in it. (4+2)
- 16. a) With neat labelled diagram, explain the working of Calomel electrode.
 - b) Write any two limitations of Arrhenius theory of electrolytic dissociation. (4+2)
- 17. a) How is standard electrode potential (E°) value of Zinc electrode determined using SHE?
 - b) KCI is used in salt bridges. Give reason. (4+2)
- a) Explain the acid-base theory of indicators by taking phenolphthalein as an example.
 - b) Give one example each for acidic and basic buffer. (4+2)
- 19. a) Define:
 - i) Thomson effect and
 - ii) Seebeck effect.
 - b) CO₂ has zero dipole moment and SO₂ has permanent dipole moment.
 Give reason.

- 20. a) What are polar and non-polar molecules?
 - b) Write Clausius-Mossotti equation and indicate the terms involved in it.
 - c) Calculate the reduced mass of HCI molecule. Given atomic masses of hydrogen and chlorine are 1.008 amu and 35.5 amu respectively.
 [N_A = 6.023 × 10²³]. (2+2+2)
- 21. a) Derive the relationship between moment of inertia and bond length for a diatomic molecule.
 - b) Write the selection rules for pure rotational and vibrational transitions of a hetero atomic molecule. (4+2)
- 22. a) Write the different modes of CO2 and which mode is infrared active? Why?
 - b) State Hooke's law. (4+2)
- 23. a) Write any four differences between Raman and I.R. spectra.
 - b) State Frank-Condon principle. (4+2)
- 24. a) Define the terms:
 - i) Limiting current and
 - ii) Residual current.
 - b) The force constant of HBr is 410 Nm⁻¹. Calculate the fundamental vibrational wave number. [Given $\mu = 1.64 \times 10^{-27}$ kg and $c = 3 \times 10^8$ m/s]. (4+2)
- 25. a) Write Ilkovic equation. Mention its applications.
 - b) What is half wave potential? Give its significance. (4+2)

V Semester B.Sc. Degree Examination, March/April 2022 (CBCS) (Semester Scheme) (Freshers + Repeaters) COMPUTER SCIENCE – V

Paper – V : Object Oriented Programming Using Java

Time: 3 Hours

Max. Marks: 70

Instruction: Answer all the Sections.

SECTION - A

Answer any ten questions. Each question carries 2 marks.

 $(10 \times 2 = 20)$

- 1) Mention any two features of OOPs.
- Write the syntax of switch statement.
- 3) What is command line arguments?
- 4) Define class and object.
- Mention various access specifiers in Java.
- 6) What is a vector?
- 7) Define thread priorities.
- 8) What is an error ? Mention types of errors.
- 9) What is the use of import keyword? Give example.
- 10) What are two types of interactive I/O?
- 11) What is character stream classes?
- 12) What is File Writer Class?

SECTION - B

Answer any five questions. Each question carries 10 marks.

 $(5 \times 10 = 50)$

a) Explain the structure of Java program.

5

5

b) Explain any three types of operators in Java with suitable example.

~	 ~	_
61	.,	ч
•	 u	-

14)	a)	Explain any two looping statements with example.	5
14)		Explain if-else statement and else-if ladder with syntax and example.	5
15)		Explain any five string methods in Java. Write a note on constructors.	5
16)		Write a note on one dimensional array. Difference between method overloading and method overriding in Java.	5
17)		Explain life cycle of thread. Write a short note on: i) throw ii) finalizer method.	6
18)	8 8	Explain creating and implementing user-defined packages. Write a note on exceptions in Java.	5
19)		Explain Life cycle of an applet. Write a note on Byte stream classes.	5
20)		Write a program to implement keyboard events. Explain any two methods in the graphics class.	5

THE PERSON NAMED IN

The print when the same of the same

V Semester B.Sc. Degree Examination, March/April 2022 (CBCS Scheme) LIFE SCIENCE

Paper - VI: Developmental Biology

Time: 3 Hours Max. Marks: 70

Instructions: 1) Answer all questions.

2) Draw diagrams wherever necessary.

Explain any two of the following.

 $(10 \times 2 = 20)$

- Explain the program of developments in Vertebrates.
- Explain how endocrine control metamorphosis in Amphibia and Insects.
- Explain the Anther wall structure.
- Explain the structure and types of Endosperm.

Write explanatory notes on any five of the following.

 $(6 \times 5 = 30)$

- Types of Fertilization.
- Primary organizer.
- Syngamy.
- Classification of Embryogeny.
- Importance of cleavage.
- Pollen germination.
- Mature Embryo Sac.

Write short notes on any five of the following.

 $(4 \times 5 = 20)$

- 12. Gastrulation.
- Hox genes.
- 14. Haustoria.
- Double Fertilization.
- Tapetum.
- 17. Androecium.
- 18. Regeneration.

MINIMPER NAMED IN

V Semester B.Sc. Degree Examination, March/April 2022 (CBCS) (Semester Scheme) COMPUTER SCIENCE – VI Visual Programming

Time: 3 Hours

Max. Marks: 70

Instruction: Answer all Sections.

SECTION - A

Answer any 10 questions. Each question carries 2 marks.

 $(10 \times 2 = 20)$

- Mention any two visual basic editions.
- 2) What is form object?
- 3) What is dynamic array?
- 4) Distinguish between picture box and image box.
- 5) What is menu editor?
- 6) Mention keyboard events in VB.
- 7) Define polymorphism.
 - 8) Differentiate between ADO and DAO.
 - 9) What is ODBC?
- 10) What is MFC ?
- 11) What are Resources in VC++?
- 12) Define serialization.

SECTION - B

II.Ans	wer	any 5 questions. Each question carries 10 marks.	(5×10=	50)
13)	a)	What are the features of visual basic.		5
	b)	Explain about the visual basic IDE.		5
14)	a)	Explain any two intrinsic controls in VB.		4
	b)	Explain the pre-defined dialog boxes in VB.		6
15)	a)	Explain the select-case statement with examples.		5
	b)	Explain any two looping statements in VB.		5
16)	a)	Explain any three array functions used in VB.		6
	b)	Explain any two microsoft windows common controls in VB.		4
17	a)	What is file? Write a note on sequential file in VB.		5
	b)	Write a note on DLL in VB.		5
18	a)	Write a short notes on DAO data control.		5
	b)	Write a note on Data Grid control in VB.		5
19	a)	Write a VB program to encrypt and decrypt a string.		6
	b)	Compare between SDI and MDI in VC++.		4
20) a)	Explain the VC++ components.		5
	b)	Explain the features of VC++.		_

V Semester B.Sc. Examination, March/April 2022 (CBCS) CHEMISTRY

Organic Chemistry (Paper - V)

Time: 3 Hours

Max Marks: 70

- Instructions: 1) The question paper has two Parts. Answer both the
 - 2) Draw diagrams and write chemical equations wherever necessary.

PART - A

Answer any eight of the following questions. Each question carries two marks. $(8 \times 2 = 16)$

- What are enantiomers? Give an example.
- 2. How would Ethylamine obtained from acetaldehyde?
- 3. Write Haworth structure of Lactose.
- State Isoprene rule.
- 5. Write the Nitration of Quinoline.
- Write the structure of Menthol and its uses.
- 7. What is Mordant?
- 8. Write the structure of Diclofenac and its uses.
- 9. What is bathochromic effect? Give an example.
- 10. What is principle of UV spectroscopy ?
- Write the D.L. configurations of Glyceraldehyde.
- 12. What are epimers? Give an example.

PART - B

Answer any nine of the following questions. Each question carries six marks.

 $(9 \times 6 = 54)$

- a) Explain optical isomerism of lactic acid.
 - b) Write E-Z configurations of 2-butene.

(4+2)

- a) Explain Resolution of Racemic mixture by chemical method.
 - b) Define Resolution.

(4+2)

15. a) Describe Hinsberg test to distinguish primary, secondary and tertiary amines. b) How benzene diazonium chloride is converted to chlorobenzene? (4+2)16. a) Write classification of carbohydrates, based on number of monomeric units present, with one example per each. (4+2) b) Write erythro and threo isomers of Tartaric acid. a) Describe Skraup's synthesis of Quinoline. (4+2) b) Give an example for chichibabin reaction. a) Write any four general characteristics of Alkaloids. (4+2) b) Structure of Nicotine and identify chiral carbon. 19. a) How Malachite green synthesized? (4+2) b) R.S. configuration of 2-Amino propanoic acid. a) Outline the synthesis of sulphanilamide. (4+2) b) Write the synthesis of pyridine from acetylene. 21. a) What is chemical shift? How it is expressed? b) Why TMS used as standard reference compound in (3+3)NMR spectroscopy? 22. a) Mention the number of signals and multiplicity of the signals in the NMR spectrum of 1, 1, 2-trichloro ethane. b) Write advantages of spectroscopic method over conventional (4+2)methods. 23. a) Explain Gabriel Phthalimide reaction with example. b) IUPAC name of Trimethylamine. (4+2)24. a) How citral synthesized from methyl heptenone? b) Compare the basicity of pyrrole and pyridine. (4+2)25. a) Draw the two conformations of 1, 2-dimethyl cyclohexane. b) Significance of fingerprint region in IR spectroscopy. (4+2)

V Semester B.Sc. Examination, March/April 2022 (CBCS) MATHEMATICS Mathematics – VI

Time: 3 Hours

Max. Marks: 70

Instruction: Answer all questions.

PART - A

1. Answer any five questions:

 $(5 \times 2 = 10)$

- a) Write the Euler's equation when f is independent of x.
- b) Find the differential equation of the functional $I = \int_{x_1}^{x_2} \left[y^2 + (y')^2 + 2ye^x \right] dx$
- c) Define geodesic on a surface.
- d) Evaluate $\int_C (5xdx + ydy)$, where C is the curve $y = 2x^2$ from (0, 0) to (1, 2).
- e) Evaluate $\int_{0}^{2} \int_{0}^{1} (x+y) dxdy$.
- f) Evaluate $\iiint_{0}^{1} \int_{0}^{1} e^{x+y+z} dxdydz$.
- g) State Gauss' divergence theorem.
- h) If V is the volume of a region bounded by a closed surface S, then show that $\iint_{\mathbb{R}} \left(\nabla r^2 \cdot \hat{n} \right) ds = 6V.$

PART - B

Answer two full questions:

 $(2 \times 10 = 20)$

- 2. a) Find the extremal of the functional $I = \int_{0}^{\frac{\pi}{2}} \left[y^2 (y')^2 2y \sin x \right] dx$ under the end conditions $y(0) = y\left(\frac{\pi}{2}\right) = 0$.
 - b) Find the geodesic on a plane.

OR

- 3. a) Find the function y which makes the integral $\int_{x_1}^{x_2} \left[y^2 + 4(y')^2 \right] dx = 0$ an extremum.
 - b) Find the geodesics on a surface given that the arc length on the surface is $S = \int\limits_{x_1}^{x_2} \sqrt{x \left[1 + (y')^2\right]} \, dx \; .$
- a) If a cable hangs freely under gravity from two fixed points, then show that the shape of the curve is a catenary.
 - b) Find the extremal of the functional $\int_{0}^{1} \left[(y')^2 + x^2 \right] dx$ subject to the constraint $\int_{0}^{1} y dx = 2$ and having end conditions y(0) = 0, y(1) = 1.
- 5. a) Find the extremal of the functional $I = \int_0^{\pi} \left[(y')^2 y^2 \right] dx$ under the conditions y(0) = 0, $y(\pi) = 1$ subject to the condition $\int_0^{\pi} y dx = 1$.

 b) Find the extremal of the functional $I = \int_{x_0}^{x_2} \left[1 + x \ y' + x(y')^2 \right] dx$.

Answer two full questions:

(2×10=20)

- 6. a) Evaluate $\int_C [(2x + y)dx + (3y + x) dy]$ along the line joining (0,1) and (2, 5)
 - b) Evaluate $\iint_{R} xy \, dxdy$ over the positive quadrant of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.
- 7. a) Change the order of integration and evaluate $\int_{0}^{3} \int_{0}^{\sqrt{4-y}} (x+y) dxdy$.
 - b) Find the area between the parabolas y² = 4ax and x² = 4ay by double integration.

- 8. a) Evaluate $\int_{0}^{a} \int_{0}^{\sqrt{a^{2}-x^{2}}} \int_{0}^{\sqrt{a^{2}-x^{2}-y^{2}}} \frac{dxdydz}{\sqrt{a^{2}-x^{2}-y^{2}-z^{2}}}.$
 - b) Evaluate $\iint_{R} xy (x^2 + y^2)^{\frac{3}{2}} dxdy$ over the positive quadrant of the circle $x^2 + y^2 = a^2$ by transforming to polar co-ordinates.

-3-

OR

- 9. a) Find the volume bounded by the cylinder $x^2 + y^2 = 4$ and the planes y + z = 3 and z = 0.
 - b) Evaluate $\iiint\limits_{R} z (x^2 + y^2) dx dy dz$, $x^2 + y^2 \le 1$; $2 \le z \le 3$ by changing to cylindrical polar co-ordinates.

PART - D

Answer two full questions:

 $(2 \times 10 = 20)$

- 10. a) State and prove Green's theorem in a plane.
 - b) By using Green's theorem, evaluate $\int\limits_C (y-\sin x)\,dx+\cos x\,dy$, where C is the triangle in the xy-plane bounded by the lines $y=0,\ x=\frac{\pi}{2}$ and $y=\frac{2x}{\pi}$.
- 11. a) Evaluate $\iint_S \vec{F} \cdot \hat{n} ds$ using divergence theorem, where $\vec{F} = (x^2 yz) \hat{i} + (y^2 zx) \hat{j} + (z^2 xy) \hat{k}$ taken over the rectangular parallelopiped $0 \le x \le a$, $0 \le y \le b$, $0 \le z \le c$.
 - b) Evaluate $\int\limits_C e^{-x} \sin y dx + e^{-x} \cos y \, dy$, using Green's theorem, where C is the rectangle with vertices (0, 0), $(\pi, 0)$, $\left(\pi, \frac{\pi}{2}\right)$ and $\left(0, \frac{\pi}{2}\right)$.
- 12. a) Using Stoke's theorem evaluate $\int_{C} \vec{F} \cdot d\vec{r}$, where $\vec{F} = y^2 \hat{i} + x^2 \hat{j} (x + z) \hat{k}$ and C is the boundary of the triangle with vertices (0, 0, 0), (1, 0, 0) and (1, 1, 0).

TAX II serous d or

b) Using Green's theorem, evaluate for the scalar line integral of $\vec{F} = (x^2 - y^2)\hat{i} + 2xy\hat{j}$ over the rectangular region bounded by the line x = 0, y = 0; x = a, y = b.

OR

- 13. a) Evaluate using Gauss' divergence theorem $\iint_S \vec{F} \cdot \hat{n} ds$, where $\vec{F} = (x \hat{i} + y \hat{j} + z^2 \hat{k})$ and s is the closed surface bounded by the cone $x^2 + y^2 = z^2$ and the plane z = 1.
 - b) Evaluate by Stoke's theorem $\oint_C (\sin z dx \cos x dy + \sin y dz)$, where 'C' is the boundary of the rectangle, $0 \le x \le \pi$, $0 \le y \le 1$, z = 3.

the total and the second of the second of the second

V Semester B.A./B.Sc. Examination, March/April 2022 (Semester Scheme) (CBCS) (F + R) (2016 – 17 and Onwards) MATHEMATICS (Paper – V)

Time: 3 Hours Max. Marks: 70

Instruction: Answer all questions.

PART - A

Answer any five questions.

 $(5 \times 2 = 10)$

- a) In a ring $(R, +, \cdot)$, show that $a \cdot (-b) = (-a) \cdot b = -(a \cdot b)$ for all $a, b \in R$.
- b) Define subring of a ring. Give an example.
- c) Give an example of
 - i) Commutative ring without unity.
 - ii) A non commutative ring without unity.
- d) If $\phi(x, y, z) = x^2y^2z^2$ and F = 2xi + yi + 3zk find $F \cdot \nabla \phi$.
- e) Find the unit normal vector to the surface $x^2 y^2 + z = 3$ at the point (1, 0, 2).
- f) Evaluate: $\Delta^3[(1-x)(1-2x)(1-3x)]$.
- g) Write Lagrange's interpolation formula.
- h) Evaluate: $\int_0^1 \frac{dx}{1+x}$ using Trapezoidal rule, given

x	0	1 6	2 6	3 6	$\frac{4}{6}$	5 6	1
у	1	0.8571	0.75	0.6667	0.6	0.5455	0.5

PART - B

Answer two full questions.

 $(2\times10=20)$

- a) Prove that every field is an integral domain.Is the converse of the above theorem is true? Justify with example.
 - b) Show that set R = {0, 1, 2, 3, 4, 5} is a commutative ring w.r.t ⊕_a and ⊗_a as two compositions.

OF

the filler of the their the

- a) Prove that a ring R without zero divisors if and only if the cancellation laws holds.
 - b) Show that necessary and sufficient condition for a non-empty subset S of a ring R to be a subring of R are
 - i) a b∈ S
- ∀a, b∈ S
- ii) abe S
- ∀a, b∈ S
- a) Prove that an ideal S of the ring (z, +,·) is maximal if and only if S is generated by some prime integer.
 - b) Find all the principal ideals of the ring R = {0, 1, 2, 3, 4, 5} w.r.t \oplus_6 and \otimes_6 OR
- a) If f: R → R' be a homomorphism of R into R', then show that Ker f is an ideal of R.
 - b) State and prove fundamental theorem of homomorphism.

PART - C

Answer two full questions.

 $(2 \times 10 = 20)$

- a) Find the directional derivative of φ(x, y, z) = xyz xy²z³ at the point (1, 2, -1) in the direction of i j 3k.
 - b) If $\vec{F} = \text{grad}(x^3 + y^3 + z^3 3xyz)$, find div \vec{F} and curl \vec{F} .
- 7. a) Find the values of 'a' and 'b' so that the surface $5x^2 2yz 9x = 0$ may cut the surface $ax^2 + by^0 = 4$ orthogonally at (1, -1, 2).
 - b) If ϕ is a scalar point function and \tilde{F} is a vector point function, prove that $div (\phi \tilde{F}) = \phi (div \tilde{F}) + (grad \phi). \tilde{F}$.
- 8. a) If $u = x^2 \hat{i} + y^2 \hat{j} + z^2 \hat{k}$ and $v = yz \hat{i} + zx \hat{j} + xy \hat{k}$. Show that $u \times v$ is a solenoidal vector.
 - b) Show that $\vec{F}=(6xy+z^0)^{\frac{1}{3}}+(3x^2-z)^{\frac{1}{3}}+(3xz^2-y)^{\frac{1}{6}}$ is irrotational. Find ϕ such that $\vec{F}=\nabla\phi$.

OR

- 9. a) Prove that:
 - i) $div(curl \vec{F}) = 0$.
 - ii) curl (grad ϕ) = 0.
 - b) For any vector field \hat{f} and \hat{g} prove that $div(\hat{f} \times \hat{g}) = \hat{g}.curl \hat{f} \hat{f}.curl \hat{g}$.

PART - D

Answer any two full questions.

 $(2 \times 10 = 20)$

10. a) Use the method of separation of symbols. Prove that

$$u_0 + \frac{u_1x}{1!} + \frac{u_2x^2}{2!} + \dots = e^x \left[u_0 + x \frac{\Delta u_0}{1!} + x^2 \frac{\Delta u_0}{2!} + \dots \right]$$

b) Obtain the function whose first difference is $6x^2 + 10x + 11$.

OR

 a) Find a cubic polynomials which takes the following data and hence evaluate f(4).

x	0	1	2	3
f(x)	1	2	1	10

b) Find f(1.4) from the following data using difference table.

Γ	x	1	2	3	4	5
T	f(x)	10	26	58	112	194

12. a) Use Newton divided difference formula and find f(8) from the following data :

х	1	3	6	11
f(x)	4	32	224	1344

b) Evaluate $\int_0^{\pi} \frac{1}{1+x^2} dx$ by using Simpson's $\frac{3}{8}$ rule by taking n = 6.

OR

13. a) By using Lagrange's interpolation formula, find f(6) from the following data :

×	3	7	9	10
f(x)	168	120	72	63

b) Evaluate $\int_0^{\infty} e^{-t^2} dx$ by taking 6 subintervals by using Simpson's $\frac{1}{3}^{nd}$ rule.

V Semester B.A./B.Sc. Examination, March/April 2022 (CBCS) MATHEMATICS – V

Time: 3 Hours

Max. Marks: 70

Instruction: Answer all questions.

PART - A

Answer any five questions:

 $(5 \times 2 = 10)$

- a) In a ring (R, +, .) prove that a.(b c) = a.b a.c, ∀a, b, c ∈ R.
 - b) Define sub-ring of a ring. Give an example.
 - c) Show that $f:(z,+,.)\to(z,+,.)$ defined by $f(x)=x,\ \forall x\in z$ is a homomorphism.
 - d) Find the unit normal vector to the surface $xy^3z^2 = 4$ at (-1, -1, 2).
 - e) If $\vec{F} = yz\hat{i} + zx\hat{j} + xy\hat{k}$, show that \vec{F} is irrotational.
 - f) Evaluate $\Delta^{10}\left[\left(1-ax\right)\left(1-bx^2\right)\left(1-cx^3\right)\left(1-dx^4\right)\right]$.
 - g) Write Lagrange's interpolation formula for unequal intervals.
 - h) Evaluate $\int_{0}^{b} \frac{1}{1+x^2} dx$ using Simpson's $\frac{3}{8}$ rule given

x	0	1	2	3	4	5	6
у	1	0.5	0.2	0.1	0.0588	0.0385	0.027

PART - B

Answer two full questions :

 $(2 \times 10 = 20)$

- 2. a) Prove that every field is an integral domain.
 - b) Prove that the set R = {0, 1, 2, 3, 4, 5} is a commutative ring w.r.t. +_e and x_e as the two compositions.

OR

-2-

- a) Prove that a ring R is without zero divisors if and only if cancellation laws hold in R.
 - b) Find all the principal ideals of the ring $R = \{0, 1, 2, 3, 4, 5\} \text{ w.r.t. } +_{6} \text{ and } x_{6}.$
- a) If f: R → R' be a homomorphism of R into R' then show that Ker f is an ideal of R.
 - b) State and prove fundamental theorem of homomorphism of rings.

OR

- 5. a) Show that $f: R_1 \to R$ defined by $f \begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix} = a$, $\forall \begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix} \in R$ is an isomorphism where $R_1 = \left\{ \begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix} \middle/ a \in R \right\}$.
 - b) Prove that an ideal S of the ring of integers (z, +, .) is maximal if and only if S is generated by some prime integer.

Answer two full questions:

 $(2 \times 10 = 20)$

- 6. a) Prove that the surfaces $4x^2y + z^3 = 4$ and $5x^2 2yz 9x = 0$ intersect orthogonally at the point (1, -1, 2).
 - b) If $\vec{F} = \text{grad}(2x^3y^2z^4)$ find $\text{div}(\vec{F})$ and $\text{curl}(\vec{F})$.

OR

- 7. a) Prove that $\nabla^2(\mathbf{r}^n) = \mathbf{n} (\mathbf{n} + 1)\mathbf{r}^{n-2}$ where n is a non-zero constant. Also show that \mathbf{r}^n is harmonic if $\mathbf{n} = -1$.
 - b) If the vector $\vec{F} = (3x + 3y + 4z) \hat{i} + (x ay + 3z) \hat{j} + (3x + 2y z) \hat{k}$ is Solenoidal find 'a'.

- 8. a) If $\vec{F} = (x + y + az) \hat{i} + (bx + 2y z) \hat{j} + (x + cy + 2z) \hat{k}$. Find a, b, c such that \vec{F} is irrotational then find ϕ such that $\vec{F} = \nabla \phi$.
 - b) If ϕ is a scalar point function and \vec{F} is a vector point function then prove that $\operatorname{div}\left(\phi\vec{F}\right) = \phi\left(\operatorname{div}\vec{F}\right) + (\operatorname{grad}\phi) \cdot \vec{F}$.

OR

9. a) If
$$\vec{F} = x^2yz\hat{i} + xy^2z\hat{j} + xyz^2\hat{k}$$
 and $\phi = xyz$ find div $(\phi\vec{F})$.

b) If
$$\vec{F} = x^2y\hat{i} - 2xz\hat{j} + 2yz\hat{k}$$
 find curl (curl \vec{F}).

Answer two full questions:

 $(2 \times 10 = 20)$

10. a) Use the method of separation of symbols. Prove that

$$u_0 + u_1 x + u_2 x^2 + ... \text{ to } \infty = \frac{u_0}{\left(1 - x\right)} + \frac{x \Delta u_0}{\left(1 - x\right)^2} + \frac{x^2 \Delta^2 u_0}{\left(1 - x\right)^3} + ... \text{ to } \infty.$$

b) Find f(2.5) from the following data:

x	1	2	3	4	5	6
f(x)	1	8	27	64	125	216

OR

11. a) Find the cubic polynomial which takes the following values:

х	0	1	2	3
f(x)	1	2	1	10

- b) Using Simpson's $\frac{1}{3}^{rd}$ rule evaluate $\int_{0}^{0.6} e^{-x^2} dx$.
- 12. a) Evaluate:
 - i) $\Delta(e^{2x} \log 3x)$ (take h = 1)
 - ii) $\Delta(\tan^{-1}x)$ (take h = 1).

b) Using Lagrange's interpolation formula find f(6) from the following data:

-4-

X	3	7	9	10
f(x)	168	120	72	63

OR

13. a) Using Newton's divided difference table find f(7) from the following data:

×	2	5	8	10	12
у	4.4	6.2	6.7	7.5	8.7

b) Evaluate $\int_{0}^{5} \log_{10} x \, dx$ by Trapezoidal rule dividing the interval (1, 5) into 8 equal intervals.

V Semester B.A./B.Sc. Examination, March/April 2022 (CBCS 2016-17 and Onwards) (F+R) MATHEMATICS Mathematics (Paper – VI)

Time: 3 Hours Max. Marks: 70

Instruction: Answer all questions.

PART - A

Answer any five questions.

 $(5 \times 2 = 10)$

- a) Show that the shortest distance between two points in a plane is a straight line.
 - b) Find the differential equation of the functional $I = \int_{x_1}^{x_2} \left[y^2 (y')^2 2y \sin x \right] dx$.
 - c) Write Euler's equation when the function f is independent of x and y.
 - d) Evaluate $\int_C [xdy ydx]$, where C is the curve $y = x^2$ from (0, 0) to (1, 1).
 - e) Evaluate $\int_{0.0}^{a.b} (x^2 + y^2) dxdy$.
 - f) Evaluate $\iiint_{0.01}^{2.2} xyz^2 dxdydz$
 - g) State Stoke's theorem.
 - h) Show that the area of ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is πab using Green's theorem.

PART - B

(2×10=20)

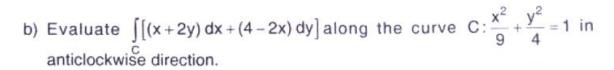
Answer two full questions.

- 2. a) Derive the Euler's equation in the form $\frac{\partial f}{\partial y} \frac{d}{dx} \left(\frac{\partial f}{\partial y'} \right) = 0$.
 - b) Find the geodesic on a surface of right circular cylinder.

OR

- 3. a) Find the extremal of the functional $I = \int_{0}^{x_2} \left[12xy + (y')^2 \right] dx$
 - b) Solve the variational problem $\int_{1}^{2} \left[x^{2}(y')^{2} + 2y(x+y) \right] dx = 0 \text{ with the conditions}$ y(1) = 0 and y(2) = 0.
- 4. a) Find the extremal of the functional $I = \int_0^\pi \left[(y')^2 y^2 \right] dx$ with y(0) = 0 and $y(\pi) = 1$ and subject to the constraint $J = \int_0^\pi y \, dx = 1$.
 - b) Show that the general solution of Euler's equation for the integral

$$I = \int_{x_1}^{x_2} \left(\frac{y'}{y}\right)^2 dx \text{ is } y = ae^{bx}.$$
OR


- a) Find the equation of the plane curve on which a particle in the absence of friction, will slide from one point to another in the shortest time under the action of gravity.
 - b) Find the extremal of the functional $I = \int_{x_1}^{x_2} \left[y^2 + (y')^2 + 2ye^x \right] dx$.

PART - C

Answer two full questions.

(2×10=20)

6. a) Evaluate $\int_C (x + y + z) ds$, where 'C' is the line joining the points (1, 2, 3) and (4, 5, 6) whose equations are x = 3t + 1, y = 3t + 2, z = 3t + 3.

OR

- 7. a) Evaluate $\iint_A (4x^2 y^2) dxdy$, where 'A' is the area bounded by the lines y = 0, y = x and x = 1.
 - b) Find the area of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ by using double integration.
- 8. a) Evaluate $\int_{a}^{a} \int_{b}^{b} \int_{c}^{c} (x^2 + y^2 + z^2) dxdydz$.
 - b) Evaluate $\int_0^\infty \int_0^\infty e^{-(x^2+y^2)} dxdy$ by changing to polar coordinates.

OR

- a) Evaluate ∫∫∫ xyzdxdydz over the positive octant of the sphere
 x² + y² + z² = a² by transforming into cylindrical polar coordinates.
 - b) Find the volume of the sphere $x^2 + y^2 + z^2 = a^2$ using triple integration.

Answer two full questions.

 $(2\times10=20)$

- 10. a) State and prove Green's theorem.
 - b) Evaluate using divergence theorem ∫∫F · n̂ dS, where F = 2xyî + yz²j + xzk̂ and S be the surface of the cube bounded by x = 0, x = 1, y = 0, y = 1, z = 0, z = 1.

OR

- 11. a) Verify Green's theorem in the plane for $\oint_C \left[xy + y^2 \right] dx + x^2 dy$, where C is the closed curve bounded by y = x and $y = x^2$.
 - b) Evaluate $\iint \vec{F} \cdot \hat{n} dS$ using divergence theorem where $\vec{F} = x\hat{i} y\hat{j} + (z^2 1)\hat{k}$ and S is the closed surface bounded by planes z = 0, z = 1 and the cylinder $x^2 + y^2 = 4$.
- 12. a) Evaluate by Stoke's theorem $\oint_C [yzdx + zxdy + xydz]$, where C is the curve $x^2 + y^2 = 1$, $z = y^2$.
 - b) Evaluate by using divergence theorem for $\iint_S \vec{F} \cdot \hat{n} \, dS$, where $\vec{F} = 2xy\hat{i} + yz^2\hat{j} + xz\hat{k}$ over the rectangular parallelepiped $0 \le x \le 1$, $0 \le y \le 2$, $0 \le z \le 3$.
- 13. a) Evaluate by Stoke's theorem $\oint_C [\sin z dx \cos x dy + \sin y dz]$, where C is the boundary of rectangle $0 \le x \le \pi$, $0 \le y \le 1$, z = 3.

HEND IN DREAM CONT. I.