

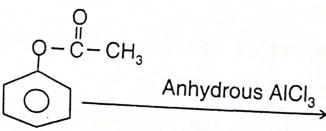
II Semester M.Sc. Degree Examination, November 2023 (CBCS Scheme) CHEMISTRY

C - 202: Organic Chemistry - II

Time: 3 Hours

Max. Marks: 70

Instruction: Answer Q. No. 1 and any five of the remaining.


Answer any ten questions :

 $(10 \times 2 = 20)$

- a) What is Gattermann-Koch reaction? Explain with an example.
- b) Sketch the mechanism of Smiles rearrangement reaction.
- c) What is Schiemann reaction? Sketch the mechanism.
- d) What is stereoselectivity reaction? Explain with an example.
- e) Give an example for the hydrogenation reaction of a double and triple bond.
- f) Sketch the mechanism for the below mentioned Wagner-Meerwein rearrangement reaction.

- g) Sketch the mechanism for Hoffmann Bromamide rearrangement reaction.
- h) Explain the mechanism of Pinacol-Pinacolone rearrangement reaction.
- Give the mechanism for Wittig rearrangement reaction, when alkylarylether reacts with phenyl lithium.
- Define the term "Peptidomimetics" used in peptide engineering.
- k) Explain "Racemization in peptide synthesis".
- Explain briefly cleavage of peptide bonds by chemical method.

- a) Give an example for Vilsmeier-Haack reaction and explain its detail mechanism.
 - b) Explain Benzyne mechanism and its significance with an example. (5+5=10)
- 3. a) Explain the mechanism of Bucherer reaction with an example.
 - b) Explain Van-Richter reaction mechanism with an example. (5+5=10)
- 4. a) Sketch the detain mechanism of Ene synthesis. Give one example.
 - b) Explain the mechanism of Mannich reaction by taking an example. (5+5=10)
- 5. a) How do you convert aldehyde or ketone to primary alcohol, secondary alcohol and tertiary alcohol with the help of Grignard reagent?
 - b) Explain the mechanism of metal hydride reduction of carbonyl compounds with lithium aluminium hydride.
 - c) Sketch the mechanism for the addition of Grignard reagent to a carbonyl compound. (3+4+3=10)
- 6. a) Sketch the mechanism for Benzil-Benzilic acid rearrangement.
 - b) Sketch the mechanism of Bayer-Villager oxidation, when ketones are treated with perbenzoic acid.
 - c) Explain the mechanism of E_1 Elimination reaction and E_2 Elimination reaction. (3+3+4=10)
- a) Sketch the mechanism of Benzidine rearrangement reaction, when hydrazobenzene is treated with acid.
 - b) Predict the product and explain the mechanism below mentioned Fries rearrangement reaction.

- c) Explain the mechanism of Beckmann rearrangement reaction with an example.
- d) Sketch the mechanism for below mentioned Curtius rearrangement reaction and predict the product.

$$\begin{array}{ccc}
O & \oplus & \ominus \\
R - C - N = N = N
\end{array}$$
Inert solvent
$$(3+2+3+2=10)$$

- a) Explain the classification of peptides on the basis of organization and on the basis of function.
 - b) Explain the use of D.C.C. and HOBt for peptide bond formation reaction.
 - c) Explain briefly Sanger method of sequencing of peptides. (4+4+2=10)

Il Semester M.Sc. Degree Examination, November 2023 (CBCS Scheme) CHEMISTRY

C - 204 : Spectroscopy - I

Time: 3 Hours Max. Marks: 70

Instruction: Answer question no. 1 and any five of the remaining.

Answer any ten of the following.

 $(10 \times 2 = 20)$

- a) Give the symmetry elements present in square planar AB, molecule.
- b) What point group is obtained by adding i to c_3 and σ_b to C_{4V} ?
- c) Write the significance of Mulliken symbols of A_{1g} and B_{1u} .
- d) Classify the following molecules into microwave active or inactive justify your choice. i) C₂H₂ ii) HCN iii) CO₂ iv) HF.
- e) Compare the potential energy curves of an harmonic oscillator with that of an anharmonic oscillator.
- f) What is Predissociation?
- g) Describe the rule of mutual exclusion.
- h) Depict polarizability ellipsoid for CO₂.
- i) What is stark effect?
- j) Antistokes lines are less intense than stokes explain.
- k) What is phosphorescence?
- I) State Laporte rule for electronic transitions.
- 2. a) Determine the point group symmetry of the following molecule. (5+5=10)
 - i) C₆H₆
 - ii) H₂O
 - iii) CH3
 - iv) $H-C \equiv C-H$
 - v) CHCl₃.
 - b) What is great orthogonality theorem ? Mention the five rule irreducible representation.

11914

a) State and explain the selection rules for electronic transitions. Classify the following transitions are allowed or forbidden. (5+5=10)

$$\Sigma^+ \leftrightarrow \Sigma^+, \ g \leftrightarrow g, g \leftrightarrow u, \Sigma^- \leftrightarrow \Sigma^-$$

- b) Write a note on reducible and irreducible representation.
- a) Sketch and compare the pure rotational spectra of rigid and non-rigid linear molecule. (5+5=10)
 - b) How does the electric field affect the rotational energy levels of rigid rotor?
- a) Explain with the help of Franck-condon principle the variation in the intensity of electronic spectra with internuclear distance. (5+5=10)
 - b) What are radiative and non-radiative transitions? Elaborate on internal conversion.
- 6. a) Write briefly on the main components of IR spectrometer. (3+3+4=10)
 - b) Sketch schematically the normal modes of AB₃ pyramidal molecule and comment on its IR and Raman activity.
 - c) Describe the classical theory of Raman effect.
- 7. a) State the rule of mutual exclusion. Which of the following molecules obey this rule? Justify C₃O₂, C₂H₂, NO₂, N₂O and HCI. (6+4=10)
 - b) Explain the pre-dissociation phenomenon.
- 8. a) Give the quantum-Mechanical interpretation of Raman effect. (5+5=10)
 - b) Describe the various photo-physical pathways involved in decay of excited electronic states by Jablonski diagram.